Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation.

نویسندگان

  • Regina Goetz
  • Yuji Nakada
  • Ming Chang Hu
  • Hiroshi Kurosu
  • Lei Wang
  • Teruyo Nakatani
  • Mingjun Shi
  • Anna V Eliseenkova
  • Mohammed S Razzaque
  • Orson W Moe
  • Makoto Kuro-o
  • Moosa Mohammadi
چکیده

Fibroblast growth factor (FGF) 23 inhibits renal phosphate reabsorption by activating FGF receptor (FGFR) 1c in a Klotho-dependent fashion. The phosphaturic activity of FGF23 is abrogated by proteolytic cleavage at the RXXR motif that lies at the boundary between the FGF core homology domain and the 72-residue-long C-terminal tail of FGF23. Here, we show that the soluble ectodomains of FGFR1c and Klotho are sufficient to form a ternary complex with FGF23 in vitro. The C-terminal tail of FGF23 mediates binding of FGF23 to a de novo site generated at the composite FGFR1c-Klotho interface. Consistent with this finding, the isolated 72-residue-long C-terminal tail of FGF23 impairs FGF23 signaling by competing with full-length ligand for binding to the binary FGFR-Klotho complex. Injection of the FGF23 C-terminal tail peptide into healthy rats inhibits renal phosphate excretion and induces hyperphosphatemia. In a mouse model of renal phosphate wasting attributable to high FGF23, the FGF23 C-terminal peptide reduces phosphate excretion, leading to an increase in serum phosphate concentration. Our data indicate that proteolytic cleavage at the RXXR motif abrogates FGF23 activity by a dual mechanism: by removing the binding site for the binary FGFR-Klotho complex that resides in the C-terminal region of FGF23, and by generating an endogenous inhibitor of FGF23. We propose that peptides derived from the C-terminal tail of FGF23 or peptidomimetics and small-molecule organomimetics of the C-terminal tail can be used as therapeutics to treat renal phosphate wasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The structural biology of the FGF19 subfamily.

The ability of the Fibroblast Growth Factor (FGF) 19 subfamily to signal in an endocrine fashion sets this subfamily apart from the remaining five FGF subfamilies known for their paracrine functions during embryonic development. Compared to the members of paracrine FGF subfamiles, the three members of the FGF19 subfamily, namely FGF19, FGF21 and FGF23, have poor affinity for heparan sulfate (HS...

متن کامل

Antibody-Mediated Activation of FGFR1 Induces FGF23 Production and Hypophosphatemia

The phosphaturic hormone Fibroblast Growth Factor 23 (FGF23) controls phosphate homeostasis by regulating renal expression of sodium-dependent phosphate co-transporters and cytochrome P450 enzymes involved in vitamin D catabolism. Multiple FGF Receptors (FGFRs) can act as receptors for FGF23 when bound by the co-receptor Klotho expressed in the renal tubular epithelium. FGFRs also regulate skel...

متن کامل

FGF23-Klotho axis in CKD

Fibroblast growth factor 23 (FGF23) is a bone-derived hormone regulating phosphate and vitamin D metabolism. FGF23 works by binding to Klotho-FGF receptor (FGFR) complex. FGF23 reduces serum phosphate level by suppressing the expression of type 2a and 2c sodium-phosphate cotransporters in the renal proximal tubules. In addition, FGF23 suppresses intestinal phosphate absorption by reducing 1,25-...

متن کامل

FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells

Multiply myeloma (MM) grows in and destroys bone, where osteocytes secrete FGF23, a hormone which affects phosphate homeostasis and aging. We report that multiple myeloma (MM) cells express receptors for and respond to FGF23. FGF23 increased mRNA for EGR1 and its target heparanase, a pro-osteolytic factor in MM. FGF23 signals through a complex of klotho and a classical FGF receptor (FGFR); both...

متن کامل

Klotho ablation converts the biochemical and skeletal alterations in FGF23 (R176Q) transgenic mice to a Klotho-deficient phenotype.

Transgenic mice overexpressing fibroblast growth factor (FGF23) (R176Q) (F(Tg)) exhibit biochemical {hypophosphatemia, phosphaturia, abnormal 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] metabolism} and skeletal (rickets and osteomalacia) abnormalities attributable to FGF23 action. In vitro studies now implicate the aging-related factor Klotho in the signaling mechanism of FGF23. In this study,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 1  شماره 

صفحات  -

تاریخ انتشار 2010